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Abstract 
The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA 
in-situ exploration missions to bodies in the solar system, including Mars, Europa, and Enceladus.  A corer/sampler 
was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and 
sterilized zone.  The developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated 
percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings.  
This sampler is a wireline drill that is incorporated with an inchworm mechanism allowing thru cyclic coring and 
core removal to reach great depths.  The penetration rate is optimized by simultaneously activating the percussive 
and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer 
(USDC) mechanism, which is driven by a piezoelectric stack, demonstrated to require low axial preload.  The Auto-
Gopher has been produced taking into account the lessons learned from the development of the Ultrasonic/Sonic 
Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 
meters deep.  A field demonstration of the Auto-Gopher is currently being planned with the objective of reaching as 
deep as 3 to 5 meters in tufa formation. 
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1. INTRODUCTION 
One of the main goals of NASA robotic exploration of the solar system is the search for life, water and potential 
resources for human exploration missions.  The detection of potential biosignatures and biomarkers, for both extant 
and extinct life forms, requires in-situ acquisition of a sample below the surface. The analysis for biosignatures in 
the subsurface sample would be one of the major objectives of either an in-situ or sample return missions. Since 
water is an important requirement for extraterrestrial life “as we imagine it”, the exploration target for potential 
future NASA missions includes bodies that have had, or do have, water near the surface including Mars, Europa, 
and Enceladus. There are several reasons to require samples that are at depth that is greater than 2 meters including 
highly oxidizing (Mars), high radiation (Europa) and cold/vacuum (Encleadus) environments where life and water 
cannot exist.  For the past 3 years, a joint JPL and Honeybee study has been underway to develop a prototype 
wireline coring drill, called the Auto-Gopher, for drilling as deep as 3 to 5 meters. This system can be scaled to 
virtually any depth and can potentially acquire samples from as deep as hundreds of meters.  The drill is designed to 
acquire both powdered cuttings and cores, where the generated cuttings have fine particle sizes [Blake et al., 2003] 
that could be used directly by many of the analyzers that were/are being developed for the various potential NASA 
exploration missions.  Further, the acquired cores preserve the subsurface stratigraphy and trapped volatiles 
providing important scientific information about the subsurface.  

The developed penetrator/sampler overcomes challenges that are inherent to other deep drills that include being 
heavy and require high axial preload.  Rather than using a long drill or a mechanism that involves adding 
components and mass to the penetrator bit in order to reach great depths, the Auto-Gopher produces the borehole 
cyclically by reeling it down via an active tethered mechanism.  Once the coring bit reaches its maximum internally 
available room/length, the drill is reeled back out of the formed borehole, the core is removed and the coring process 
is resumed from the deeper borehole that was formed.  The Auto-Gopher combines rotary, hammering, and 
anchoring mechanisms, where the latter provides torque preload against the sidewall of the borehole for the 
penetration mechanism.  Generally, percussion and rotation have long been the preferred methods of penetrating 
materials and formations. Percussion is very effective in fracturing hard, brittle materials like stone and ceramics, 
whereas rotation is more effective on soft and/or ductile materials such as wood, plastics, and metals.  One 
advantage of rotary drills is the effective removal of cuttings from the borehole via the flutes on the bit.  Percussion 
fractures the material, but continues to hammer at the powdered cuttings inside the borehole unless they are 



removed.  This wasted energy that could go into penetrating the medium limits the depth of penetration.  Therefore, 
combining rotation and percussion produces a highly effective penetration mechanism.  Existing hammer-drills 
produce their hammering either pneumatically or mechanically.  While the rotation in the Auto-Gopher is actuated 
by a set of electromagnetic motors, the hammering is generated by the piezoelectric mechanism called the 
Ultrasonic/Sonic Driller/Corer (USDC) that was demonstrated to require low axial load for its operation.  Recently, 
a breadboard and fully assembled Auto-Gopher were produced and the latter was tested to reach 2 meters depth.  
Currently, improvements of the mechanism are underway while plans are being made for conducting field test to 
reach as deep as 3 to 5 meters in a tufa formation. 
 

2.0 THE USDC MECHANISM 
Many common mechanisms of sampling require high axial forces and holding torques, consume high power, are 
inefficient in duty cycling, and they also require heavy equipment.  To address these limitations, the JPL’s 
Advanced Technologies Group [http://ndeaa.jpl.nasa.gov] developed the USDC mechanism (Figure 1) [Bar-Cohen 
et al., 1999; Bao et al., 2003; Bar-Cohen and Zacny, 2009].  This development was followed with many 
improvements that were disclosed in NASA New Technology Reports and patents [for example, Aldrich et al., 
2008; Badescu et al., 2006a; 2006b; Bao et al. 2004; 2010; Bar-Cohen et al. 1999; 2003; 2005; 2008; 2010; Bar-
Cohen and Sherrit. 2003a; 2003b; Dolgin et al. 2001; Sherrit et al. 2001; 2002; 2003; 2006; 2006; 2008; 2009; 
2010a; 2010b].  The USDC requires low axial force making it attractive for operation in low gravity environments 
allowing to drill and core hard formations using relatively small preload and low mass hardware.  Also, it is driven 
by either continuous or duty cycling allowing effective use of its driving power.  The USDC was demonstrated to: 1) 
drill ice and various rocks including granite, diorite, basalt and limestone; 2) operate at low and high temperatures; 
and 3) host integrated sensors for measuring various properties. A series of modifications of the USDC basic 
configuration led to the development of the Ultrasonic/sonic Rock Abrasion Tool (URAT), the Lab-on-a-drill, 
Ultrasonic/Sonic Gopher for deep ice drilling, the Auto-Gopher for deep drilling in rocks and regolith, and many 
others.   

The USDC consists of three key components: actuator, free-mass and bit (Figure 1) [Bao et al, 2003], where 
the actuator acts as a hammering mechanism hitting the free-mass and thus the bit fractures the medium underneath.  
The actuator is driven by a piezoelectric stack having backing designed to forward the generated impact power and 
in the front a horn is used for amplifying the induced displacements. The piezoelectric stack is driven in resonance, 
which is about 20-kHz in the basic configuration, and is held by a stress bolt in compression to prevent fracture 
during operation.  In contrast to typical ultrasonic drills, which have the bit physically connected to the horn, in the 
USDC the actuator hammers a free flying mass (free-mass) that bounces between the horn tip and the top of the bit 
converts the ultrasonic impacts to sonic frequency hammering blows. The impacts of the free-mass generate stress 
pulses at the interface of the bit and the rock.  The impact stress pulses propagate and fracture the rock when its 
ultimate strain is exceeded.  

 
Figure 1: A schematic diagram of the USDC cross-section (left) showing its configuration, and a photograph 
showing its ability to drill with minimum axial force (right). 

 
3.0 THE AUTO-GOPHER – BACKGROUND 

The main feature of the Auto-Gopher is its wireline operation [Bar-Cohen et al., 2005; Bar-Cohen and Zacny, 2009]. 
The drill is essentially suspended on a tether and all the motors and mechanisms are built into a tube that ends with a 
coring bit (Figure 2). The tether provides the mechanical connection to a rover/lander on a surface as well as the 
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6.  SUMMARY 
An Auto-Gopher, which is a wireline drill, was developed for deep drilling in potential future in-situ exploration 
missions.  The drill operates cyclically coring, uploading the acquired core, downloading the drill into the borehole, 
and repeating the process.  The design of the Auto-Gopher was based on lessons learned from the operation of an ice 
drill version that was demonstrated in Antarctica reaching about 2-meter deep.  The drill is a rotary-hammering 
mechanism that combines rotation by a motor and percussive actuation by the ultrasonic/sonic driller/corer (USDC) 
mechanism.  The latter is a drilling technique that requires low axial preload and has been the subject of extensive 
studies at JPL.  To allow effective design of the USDC, it was analytical modeled to predict its performance and 
produce a drill with optimized performance.  A breadboard and fully assembled Auto-Gopher units were produced 
and tested.  The latter was demonstrated to reach 2-meters deep in limestone using both rotary-only and rotation and 
percussive drilling, where the addition of the percussion was observed to reduce the required auger power by 20%.  
While the capability of the developed Auto-Gopher is currently being improved, plans are underway to field test it to 
reach 3 to 5 meters deep in tufa formation. 
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