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ABSTRACT

In this paper, a dynamic model of simply supported ionic polymer-metal composite (IPMC) beam resting on human tissue is developed. First, the bending moment in the IPMC beam due to the alternative electric potential is derived from Nemat-Nasser’s hybrid actuation model. This explicit bending moment expression provides an easy way to estimate the bending capacity of IPMC. Subsequently, the bending moment expression is incorporated in the analytical solution of beam transverse vibration to describe the response of IPMC beam to an electric potential. Pressure generated by IPMC beam on human tissue is then estimated by numerical integration. Comparisons show that the results obtained are comparable with the experimental data in the literature. Finally, to achieve the maximum deflection and total pressure, the optimal electrode length and location are discussed. To increase the flexibility and variety of beam deformation, multiple electrodes are considered. Deflection curve and generative pressure for multiple electrodes are also derived. The developed model is useful not only for the biomedical devices that employ IPMC materials but also for any other applications that utilize the vibration of IPMC materials.
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1. INTRODUCTION

Ionic polymer-metal composite (IPMC) is a type of wet electro-active polymers (EAP). It consists of a thin polyelectrolyte membrane and a type of noble metal, such as gold and platinum, chemically plated on both sides of the membrane. IPMC can undergo a fast and large bending motion when a low electric potential is applied to its electrodes. Conversely, IPMC can generate a measurable electric potential when it is subjected to a sudden bending. Thus, IPMC can serve as both actuators and sensors. 
Much effort has been devoted to understanding the actuation and sensing mechanism of IPMC materials. Shahinpoor and Kim [1-4] presented a series of papers on the fundamental properties and characteristics of IPMC, manufacturing techniques, phenomenological modeling of actuation and sensing mechanism and potential applications. Nemat-Nasser and Li [5] presented a model based on electrostatic interaction of ion transport. Later, Nemat-Nasser [6] studied the micromechanics of IPMC materials and proposed a hybrid model incorporating electrostatic, osmotic and elastic effects in the actuation process. Shahinpoor and Kim [7] investigated the mass transfer induced actuation of IPMCs and developed a technique to minimize water leakage and to increase force density of IPMCs. Taking into account of the viscoelastic property of polymer material, Newbury and Leo [8] developed a linear electromechanical model for IPMC transducers. Nemat-Nasser and Wu [9] carried out extensive experimental studies on IPMCs with different backbone ionomers and various cation forms. Weiland and Leo [10] developed a computational micromechanics model to assess the impact of uniform ion distribution on spherical clusters of IPMC ionomer. They also employed a Monte Carlo style approach to study the effects of pendant chain stiffness and charge balance of the equilibrium state of a single cluster in ionic polymer [11].
However, the actuation mechanism of IPMC has yet been fully understood. Nevertheless, research on applications of IPMC has attracted considerable attention from various disciplinaries. IPMC offers many advantages over the conventional EAP materials, such as compliance, light weight, low operation voltage and capability of working in aqueous environments. These properties make it promising for numerous applications in biomedical, naval, robotic and microelectromechanical system (MEMS) engineering [4,12,13]. One of the important applications of IPMCs is in the biomedical related instruments which contact with human organs or tissues, such as artificial ventricular muscles, surgical tools and active scleral bands. The configuration of IPMC materials could be in various forms including bands, rings and beams. 
Since IPMC materials are generally expected to work in a vibration state, it is necessary and meaningful to investigate their dynamic behaviors. However, little research has been reported in the literature to investigate the dynamic behaviors of IPMC materials. In this paper, an analytical model is developed to depict the vibration response of a simply-supported IPMC beam resting on an elastic foundation under an alternative electric field. The elastic foundation is employed to simulate the effect of human tissues. Nemat-Nasser’s [6] hybrid actuation model is incorporated into the motion equation with modifications to account for the applied alternative electric field. A closed-form solution is obtained to describe the transverse vibration of the IPMC beam subjected to the applied electric field. Based on this solution, the pressure generated on human tissue is calculated by numerical integration. To maximize the beam deflection and total pressure generated, the optimal location and length of the single electrode in the IPMC beam are discussed. To increase the flexibility of the IPMC beam and the variety of beam motion, multiple-electrodes on the IPMC beam are also considered. The deflection curve and generative pressure of the IPMC beam with multiple electrodes are obtained. The developed model is useful not only for the biomedical devices that employ IPMC materials but also for any other applications that utilize the vibration of IPMC materials. 
2. MODELING OF IPMC BEAM
As shown in Fig.1, a Nafion based IPMC beam of length 
[image: image1.wmf]L

, thickness 
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 and width 
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 is studied. The IPMC beam is chemically plated with platinum electrode on both sides and 
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x

 and 
[image: image5.wmf]2

x

 are the coordinates of the two ends of the electrode. The thickness of Nafion part of IPMC is denoted as 
[image: image6.wmf]h

. The IPMC beam is assumed to be simply supported on human tissue. The effect of tissue is modeled as a Winkler foundation with stiffness 
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. Assume that the alternative electric potentials at top and bottom surfaces are 
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, respectively, where 
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 is the time-independent magnitude of electric potential, 
[image: image11.wmf]W

 is the angular frequency and j is the imaginary unit. Due to the redistribution of cations and associated water under the applied electric field, the IPMC beam will vibrate at a frequency the same as that of the applied electric potential.
The motion equation of the beam can be obtained from Euler-Bernoulli’s beam theory as [14]
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where 
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 is the bending moment in the IPMC beam; 
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 is the bending moment due to the electric field; 
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 is the material density of IPMC beam; 
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 is the cross-sectional area of beam; 
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 is the viscous damping coefficient of the IPMC beam and 
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 is the transverse displacement of beam.
Transferring the term due to electric field to the right hand side and utilizing the strain-stress and strain-displacement relations, the following equation can be obtained
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where 
[image: image20.wmf]Y

 and I are the Young’s modulus and moment of inertia of the beam, respectively. Since the IPMC beam will undergo a pure bending at the frequency of applied electric potential, 
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 can be expressed as 
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where 
[image: image23.wmf])
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 is the Heaviside function defined as
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[image: image25.wmf]e
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 is the time-independent amplitude of bending moment and 
[image: image26.wmf]0

d

 is a phase difference between bending moment and applied electric potential which will be determined in Section 3.2.
Using the method of separation of variables, solution to Eq.(2) can be derived as
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where 
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 is the natural frequency of the beam for zero damping; 
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 is a phase lag due to the viscous damping. 

With the solution of Eq.(5), the total pressure generated by the IPMC beam can be readily obtained by
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The computation of total pressure can be implemented by numerical integration.
Once the bending moment due to electric potential 
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 is obtained, the transverse deflection of IPMC beam can be calculated using Eq.(5). In Section 3, the bending moment due to electric field is derived.
3. BENDING MOMENT GENERATED BY APPLIED ELECTRIC POTENTIAL

3.1 Charge Redistribution

When an electric potential is applied to the electrodes of IPMC, cations will migrate to the cathode while anions remain stationary because they are covalently fixed to the membrane. Two boundary layers will form due to the cation movement, characterized as the anion dominant anode boundary layer (ABL) and the cation dominant cathode boundary layer (CBL) [6]. The two boundary layers will effectively balance the electric field applied, resulting in the region between the two layers being shielded. Stresses will develop in the two layers, leading to the deformation of the IPMC material. It is the ABL and CBL that primarily contribute to the bending motion of IPMC. Therefore, it is essential to determine the thickness of the ABL and CBL prior to the calculation of the bending moment. To achieve this, the cation redistribution under an electric field should be considered first. The time variation of the charge distribution is governed by the following equation [5],
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and the basic electrostatic equations
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where 
[image: image37.wmf]E

 is the electric field; 
[image: image38.wmf]j

 is the electric potential; 
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k

 is the electric permittivity; 
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D

 is the cation diffusivity coefficient; 
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 is the gas constant; 
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 is the temperature; 
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 is the electric displacement; 
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 is the charge density; 
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 and 
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 are the valence of cations and anions, respectively; 
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 and 
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 are the cation and anion charge density, respectively; and 
[image: image49.wmf]F

 is the Faraday’s constant.

The boundary and initial conditions are
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where 
[image: image54.wmf]J

+

 is cation flux which in a simplified form is [5],
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By using the Fourier’s series and neglecting the small terms, the normalized charge density can be obtained as [6].
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where 
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where 
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 denotes the thickness of cation-depleted region where no cations exist; 
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 is the capacitance of IPMC; and 
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 are the integration constants.
By using Eq.(12), the thicknesses of ABL and CBL can be calculated as
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With Eqs.(13) and (14), the bending moment due to electric potential can be derived subsequently. In the following section, an explicit bending moment solution is obtained based on Nemat-Nasser’s [6] hybrid actuation model.
3.2 Bending Moment

Nemat-Nasser [6] studied the micromechanics of the IPMC, considering that the volumetric strains of clusters and hence the axial strain of IMPC are affected by the water uptake. The moment rate is expressed as,

	
[image: image66.wmf]/2/2

/2/2

1(,)

()

31(,)

hh

e

bxb

hh

wzt

MtYzdzYzdz

wzt

e

--

=×=×

+

òò

&

&

&


	(15)


where 
[image: image67.wmf]b

Y

 is the effective Young’s modulus of boundary layers in IPMC, i.e., the Young’s modulus of polyelectrolyte membrane; 
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 is the axial strain in x direction; 
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 is the function accounting for the water uptake in clusters; and the dot above all symbols denotes the first derivative with respect to time.
Completing the integration at the right hand side of Eq.(15) by considering the thickness of ABL and CBL and neglecting the small terms, the bending moment rate can be written as
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where 
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 and 
[image: image72.wmf]C
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 are the water uptake at ABL and CBL, respectively. 

Integrating both sides of Eq.(16) over time and considering the initial condition 
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 is the initial water uptake before the application of electric potential, the bending moment for the beam with width 
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 can be obtained as 
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where 
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Since the bending strain is small, the change of water uptake in clusters is also small. Thus, the bending moment can be approximated by expanding the right hand side of Eq.(17) at 
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 using Taylor’s series with the higher-order terms neglected, as
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Once the water uptakes 
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 and 
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 are obtained, the bending moment due to electric potential is determined. The water uptakes at ABL and CBL are governed by the following equations [6],
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where
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where 
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 are the constant coefficients accounting for the diffusion in ABL and CBL, respectively; 
[image: image103.wmf]f
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It is difficult to solve Eqs. (19) and (20) due to their nonlinearity. By transferring 
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where
[image: image130.wmf]000

(,)(1)(,)

AAA

FwtDwtwt

=+

; 
[image: image131.wmf]0

10

(,)

(,)|

A

AA

Aww

A

Fwt

Fwt

w

=

¶

=

¶

; 
[image: image132.wmf]000

(,)(1)(,)

CCC

FwtDwtwt

=+

; and 
[image: image133.wmf]0

10

(,)

(,)|

C

CC

Cww

C

Fwt

Fwt

w

=

¶

=

¶

.
The solutions of  
[image: image134.wmf]A

w

 and 
[image: image135.wmf]C

w
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where 
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 are the integration constants. After simplification, the solutions of water uptakes are
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where 
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where the dot in the subscript stands for A or C. 

As 
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 will diminish. For the steady state, i.e., t is sufficiently large, the following relation stands,
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Using the approximation of Eq.(40), Eqs.(31) and (32) can be further simplified as
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Considering the initial conditions, 
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the coefficients 
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 can be obtained from Eqs.(31) and (32) as
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As 
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 will diminish with time, for the steady state vibration, 
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 will eventually vanish. Finally, the solutions of water uptake functions are
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Since the time variation of 
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Using the solutions of water uptake in Eqs.(48) and (49), the bending moment generated by the IPMC can be obtained from Eq.(18) as
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It is worth noting that Eq. (50) is an explicit expression of bending moment including the effects of osmotic, electrostatic and elastic stresses of IPMC. This equation provides a convenient way to estimate the bending moment of IPMC at a given hydration rate. The frequency of the applied electric potential 
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 appears in the expression of bending moment. It is evident that with the increase of driving frequency 
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, the generative bending moment and therefore the vibration amplitude of IPMC decreases. This conclusion agrees with the experimental observations in [1]. In addition, a phase lag between the bending moment and the input signal is observed, i.e.,
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. It is noted that this phase lag is obtained without considering the viscous properties of solvent. For different solvent, the phase lag should vary. To include the effect of viscous property of solvent in the IPMC, Eqs.(12), (19) and (20) need modifications. The effect of viscosity of solvent can also be reflected in the overall damping coefficient 
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 in Eq.(5), which can be evaluated through experiments.
Since the thicknesses of the ABL and the CBL are derived from the condition of static electric potential and multiplied by the time variation function, they may be inaccurate for the high frequency electric field, especially for the CBL. This may result in an overestimation of bending moment from Eq.(50) since the time required for cation redistribution is neglected. However, as the time required for cation redistribution is very short, for low driving frequency, cations should have ample time to achieve a quasi-equilibrium state. Thus, Eq. (50) is more accurate for low frequency electric fields.
When 
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 is very small, e.g., the DC signal is applied, Eq.(50) is not applicable anymore. However, the bending moment for this case can be easily obtained by setting the time variation function 
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 in Eqs.(27) and (28) to unity. The bending moment under DC signal is 
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Substituting Eq.(50) into Eq.(5), the transverse vibration of the IPMC beam can be calculated. For the static signal input, the bending moment is calculated from Eq.(51).
4. ILLUSTRATIVE EXAPMLES AND DISCUSSIONS

4.1 Illustrative Examples
Before calculating the vibration of IPMC beam, the bending moment solution obtained in this paper will be validated by comparing the tip displacement of a cantilever beam with the results obtained by Nemat-Nasser [6]. Consider a Nafion based IPMC beam in Li+ form with length 18mm, width 2 mm and thickness 224μm. The plating metal is platinum and the thickness of electrode is 6μm for both top and bottom surfaces of the IPMC beam. Assume that the initial water uptake of IPMC is 
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 and the electric potential is a 1-volt DC signal. For the simplicity, the viscous damping of the IPMC is set as zero. Other material properties used in calculation are listed in Table 1. All the above parameters are the same as in [6]. 

Since the signal is DC, the bending moment can be obtained from Eq.(51). The normalized tip displacement of the cantilever beam can be expressed as
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Fig.2 shows the comparison of normalized tip displacement from Eqs. (51)-(52) and the results in [6]. It can be found that the present model is in good accord with the data in [6] at the initial deformation stage. Since Eq.(51) does not take into account the relaxation of IMPC beam, the later deformation stage does not match well. But this does not affect the accuracy of Eq.(50) since it accounts for the continuous vibration of IPMC beam where the relaxation effect is negligible. 
The blocked force for the beam can also be estimated by considering a cantilever IPMC beam subjected to a point force at the tip. The blocked force can balance the bending moment caused by the electric field such that the tip displacement is zero, which can be determined by using the Carstigliano’s theorem as 
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. 
For the 1-volt DC potential, the maximum blocked force is equivalent to 0.033 gram, which is about 1.211 times the self-weight of IMPC beam. When the electric potential increases to 5 volts, the ratio of the blocked force to the beam weight is 4.37. This ratio is comparable with the experimental result in [4] for the thin gold electrode IMPC. In [4], a 2mm thick IPMC strip of weight 0.24 gram developed 1.2 gram force under 5 volts potential, where the force-weight ratio is 5.0. This comparison indicates that the obtained results are reasonable.

Subsequently, the DC potential is replaced by a 1-volt sinusoidal potential with frequency 0.25 Hz. The stiffness of tissue is set as 15 kPa. By using Eqs.(5) and (50), the beam deflection curve at any time can be obtained. Figs. 3 and 4 respectively illustrate the IPMC beam deflection and the pressure distribution on human tissue when the electric potential is at its maximum. It can be observed that the maximum deflection of IPMC beam is in the order of 0.01 mm and the maximum pressure is around 120 Pa. The total pressure can be evaluated by Eq.(6), which is 0.2298 gram for the pressure distribution in Fig.4. This pressure is equivalent to 0.4693 mmHg on the human tissue beneath the beam.
4.2 Optimal Electrode Length 

It is evident from Eq.(5) that for different values of 
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 and 
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, which determine the position and the length of the electrode, the maximum transverse displacement and therefore the generative pressure is different. For biomedical applications of IPMCs, maximum deflection and maximum generative pressure may be required for different purposes. For examples, maximum pressure is needed for heart compression bands and maximum deflection is sometime necessary for surgical tools. To generate the maximum deflection or pressure, optimal values of coordinates of 
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 can be calculated using the developed model. For the ease of computation, we assume the stiffness of beam does not change due to the changes of electrode location and length. Yang and Zhang [15] have studied the optimal placement of a PZT actuator on a rectangular plate in terms of maximizing vibration amplitude. They used the natural frequency as a measure to determine the optimal location of PZT actuator. As IPMC is generally actuated at low frequency, far below the first natural frequency of the beam, the predominant vibration mode is the first mode. Therefore, to maximize the first vibration mode, the values of 
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However, when the elastic foundation beneath the IMPC bema is stiff, all vibration modes will have similar and small contributions to the overall vibration. In this condition, the first mode may not appear to be dominant, such as the deflection curve in Fig. 3. Fig.5 shows the influence of the electrode coordinates 
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 on the maximum beam deflection for the case of Fig.3. The maximum beam deflection of any (
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) combination is denoted by the color of the point which can be read from the color bar. It is observed that the optimal location of the electrode is at either end of the beam with the electrode length of 
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 to 
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, i.e., 
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mm. For higher foundation stiffness, say 40 kPa, the value of optimal length reduces. Fig.6 shows the relationship between the electrode coordinates and the maximum beam deflection for this case. The optimal electrode position is also close to either end of beam with the electrode length of 
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 to 
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. Fig. 7 shows the optimal electrode coordinates for the IPMC beam with foundation stiffness 0.9 kPa. It is obvious that the optimal length of electrode is equal to the length of beam. 
Therefore it can be concluded that for soft foundations, the electrode should cover the entire beam surface, while for stiff foundations, the electrode should be located near either end of the beam and the length of the electrode does not necessarily cover the entire beam.
Another issue is the optimal location and length of the electrode in terms of maximizing total pressure. Figs. 8 to 10 illustrate the relationship between the electrode coordinates and the generative pressure for foundation stiffness of 0.9 kPa, 15 kPa and 40 kPa, respectively. All the results indicate that the optimal electrode length is equal to the length of beam. Thus, IPMC beam with fully covered electrode will generate the largest force compared to other electrode configuration for the simply supported condition.
4.3 Multiple Electrodes
If the IPMC beam is discretely plated with multiple electrodes and the applied electric potentials can be different for each electrode, the IPMC beam will behave more flexibly and possibly render higher pressure or displacement on human tissue. For this case, Eq.(5) should be modified as
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where 
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 is the total number of discrete electrodes and 
[image: image206.wmf])
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 is the time variation function of the electric potential applied to the nth electrode. From Eq.(53), it can be deduced that the more electrodes, the larger the transverse displacement could be. However, more electrodes imply complexity and difficulty in operation and control system. 
A two-electrode IPMC beam is studied as illustrated in Fig.11. The two electrodes with the same length of 0.35L are located at the two ends of the beam. To avoid computational difficulty due to the change of beam stiffness, the region besides the electrodes is also considered to be plated with platinum but is isolated from electrodes by a negligible small interval. This can be achieved by chemical etching. The foundation stiffness is set as 15 kPa. Figs. 12 and 13 illustrate the deflections of beam under identical and opposite electric potentials, respectively. It is found that the opposite electric potential can produce larger transverse displacement. However, calculation shows that the generative pressure for Figs. 12 and 13 are 0.2935 gram and 0.1895 gram, respectively. This means that when the two electrodes are controlled by the identical potential, greater pressure will be generated on human tissue.
5. CONCLUSIONS
In this paper, a dynamic IMPC beam model on human tissue was developed. Analytical solution was obtained to describe the vibration response of the IPMC beam to a command of electric field. Explicit bending moment expressions were derived for both dynamic and static electric potentials, which provide an easy way to estimate the bending capacity of IPMC strips. Based on the bending moment expressions, the beam deflection curve and the pressure distribution generated on human tissue were obtained. The optimal electrode location and length in terms of maximizing deflection and generative pressure were discussed. It is found that to achieve the maximum deflection, the electrode should be located at either end of the beam, and to achieve higher total pressure, full length electrode should be used. The deflection curve and generative pressure for multiple discrete electrodes IPMC beam were also obtained. The developed model is useful not only for IPMC related biomedical instruments interacting with human tissues but also for any other devices that utilize IPMC materials.
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Figure 1 Configuration of an IPMC beam on human tissues
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Figure 2 Comparison between calculated displacement and data in [6]
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Figure 3 Deflection of IPMC beam under 1 volt sinusoidal potential (k=15 kPa)
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Figure 4 Pressure distribution on human tissue under 1 volt sinusoidal potential (k=15kPa)
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Figure 5 Relationship between electrode coordinates and maximum beam deflection (k=15 kPa)
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Figure 6 Relationship between electrode coordinates and maximum beam deflection (k=40 kPa) 
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Figure 7 Relationship between electrode coordinates and maximum beam deflection (k=0.9 kPa) 
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Figure 8 Relationship between electrode coordinates and pressure (k=0.9 kPa)
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Figure 9 Relationship between electrode coordinates and pressure (k=15 kPa)
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Figure 10 Relationship between electrode coordinates and pressure (k=40 kPa)
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Figure 11 Configuration of two discrete electrodes 
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Figure 12 Deflection of beam with two electrodes under identical potentials 
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Figure 13 Deflection of beam with two electrodes under opposite potentials
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